
Kerwin Ghigliotty Rivera

Design Document for Final Fantasy Demo

Contents
High Level Overview .. 3

Design Patterns Needed (Tracker) .. 7

Design Patterns Used in this Project ... 8

Singleton – (Managers are singleton instances) ... 8

Command with Timer Event Manager .. 9

Strategy – (Commands) .. 10

Object Pooling – (Managers and Double Linked Lists) .. 11

Template Pattern – (For Managers and their derived implementations) ... 12

High Level Overview
The goal of this project is to recreate a simple town from Final Fantasy®

The player will be in control of the main character (The Fighter in this case) and will be able to move

around the town, interact with other characters as well as enter buildings and lastly enter a battle

sequence. As for the NPCs, until I can get their appropriate sprites, I will be using the sprites of the other

jobs to represent them.

Movement options and their associated sprite

Movement Sprite (1 per step)

UP

DOWN

LEFT

RIGHT

The Town (Full image was taken from the main game)

This is the objective, to have the full town created.

Composed of 36 Columns and 26 Rows

We are working with a 36x26 (X, Y)

grid.

In which:

Small Houses = 3x3

Medium Houses = 4x3

Large Houses = 5x4

Output of the MapFactory::CreateFullTown Method

Collision Boxes set

Red = Entrances

White = Walkable Ground

Black = Walls

The problem now is to get it to only render the squares in a 16x15 pattern (7 rows above/below the

player character and 7 columns to the left 8 columns to the right of the player character) anything

outside of this grid should not be rendered.

Note:

This grid includes half of the topmost and bottommost pixels (they should be rendered but blocked by

screen dimensions)

NPCs and Player Character are Drawn a bit higher than normal pixels (explains the overlap of

characters on multiple squares)

Output of the SpriteBatch_Manager::RenderCamera method when combined with the RenderState

class for each element, once they are within the camera range (shown in blue square on the right) the

state changes to StateRendered, once the elements are out of the Camera range the state shifts to

StateCulled

Showcased in this video - https://youtu.be/rO8HL4sU4qU

https://youtu.be/rO8HL4sU4qU

Design Patterns Needed (Tracker)
Object Pooling – (Managers and Double Linked Lists) - Done

Manager for Texture Files - Done

Manager for Image Sources- Done

Manager for Sprites – Done

SpriteBatch and SpriteNodes as well as their managers – Done

SpriteBoxes and its manager – Done

SpriteProxy and SpriteBoxProxy – Done

Managers for Proxies – Done

ListBase for our Double Linked Lists - Done

Iterator base and DLink Iterator for our Double Linked Lists – Done

GameObject, GameObjectNode and their managers – Done

Composite, Component and Leaf – Done

Iterators for Composite – Done

Ghost and Delayed Object Manager for Removing/Recycling – Done

Collision Object/Rect – Done

ColVisitor and ColObserver – Done

InputManager/InputSubject/InputObserver – Done

State for Player and NPC movement– Done

TimerEvent and its Manager – Done

Command– Done

Design Patterns Used in this Project

Singleton – (Managers are singleton instances)
UML DIAGRAM

General

The basic idea of the Singleton pattern is to streamline the use of a class to a single instance, this is used

with all the Managers in this project.

The main thing to note is for singletons their constructors are private so if we want to use this pattern

the user needs to call the Initialize method, which will create an instance of the class and store it within

itself, if the user tries to call the Initialize method again then we check if there is an instance already

created, if there is, we ignore this request (or show error if we needed to), however by making sure that

all crucial calls to the manager call the initialize function we guarantee that the user will not use the

Manager without creating an instance.

The Problem

The problem that we face with this pattern is that what if we had multiple scenes and each scene

required an independent version of this singleton? Well in that case we would have to make some

adjustments to our singleton, we have to make our constructor not private and then we add another

instance of itself. Whenever we need to use this for a particular scene, we just create a separate

instance of the class and set it as active while we are in that scene, if we switch scenes, we switch the

active instance.

The benefit of this pattern

It is handy to keep track of only one instance of the class rather than having to create a variable for one

and using that as a global variable, everything we need from the class is already static, and so all the

methods are available to us.

This makes it so that everyone has access to the same instance rather than everyone creating their own.

Command with Timer Event Manager
UML DIAGRAM

General

Commands are objects that execute their functions at a given time, we use them in conjunction with our

Timer Events.

The design consists of an abstract Command class with an Execute method, then all our different

Commands can use it to execute their functions as part of our Timer Events.

The Problem

The main problem with these types of behavioral patterns is that if we don’t necessarily know what gets

executed as all the command types have an Execute method.

The benefits of this pattern

This is the working force behind our game, everything is set on timers and commands, Animation

commands used in this project are extremely useful, as they control the animation of our objects while

the Timer Event Manager controls the timing of when they animate. Movement for the NPCs are also

controlled in the same way, a command is set and at a random interval it will trigger and reinsert itself

then recalculate the timing for the movement.

Strategy – (Commands)
UML DIAGRAM

General

The main idea is to define algorithms related by type (in this case our Commands fit that pattern as well)

and we just extrapolate all the main functions into abstract classes in the main class, and all it is all taken

care of by its subclasses.

This pattern is very similar to the state pattern but in the case of state pattern we just switch the state

objects, and the functionality is taken care of, but here we are pretty much subclassing with different

takes on the abstract methods depending on the use.

The Problem

To change the behavior of a class you would need to create a different object.

The benefits of this pattern

Our commands implement this pattern to some degree, they are all children of a base class and the way

its abstract methods are created means that all the subclasses can use these methods with their own

twist.

Object Pooling – (Managers and Double Linked Lists)
UML DIAGRAM

General

This pattern consists of creating two separate pools, one active and one reserve, these pools work

together tightly, whenever we create any objects we just take from the reserve and add it to active then

we can initialize that element as we see fit, whenever we are done with the elements we can remove

them by adding them back to the reserve list and washing them of any data, then they get recycled

again when new objects are needed.

It will also grow in size depending on how many elements are needed, if there are not enough elements

in the reserve list then it will simply add more and use those.

The Problem

This pattern brings one problem, and it is that no object ever gets destroyed so no memory is freed, it’s

all kept in reserve pools.

The Benefit in this case

The textures, images, sprites, and the game objects type themselves are always kept in the manager

whenever the user needs them, no need to re add them.

Template Pattern – (For Managers and their derived implementations)
UML DIAGRAM

General

The Template design pattern allows for a parent class to have some methods implemented and the child

classes could use these derived methods and implement their own version based on their needs.

The Problem

The need for this pattern arises at the fact that if we had multiple classes with the same functions

except one or two steps then we could just have a base class have the basic skeleton of the process and

the child classes can use them in their own way.

The benefits of this pattern

Once we turn all our methods into steps then we can extrapolate each and use what we need then the

rest could be on the child classes.

